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Abstract. The buckling of a folded membrane submitted to a bi-axial compression is studied in the frame-
work of the continuum non-linear elasticity theory. We show that the formation of the fold patterning can
be quantitatively well described with a simple non-linear model. As a matter of fact, with this model, we
recover the experimental phase diagram of a secondary buckling instability with a very good precision. In
addition, depending on the anisotropy of the applied compressive stress, we find that the buckling coarsen-
ing dynamics can be described as a 1D spinodal decomposition (for a uni-axial stress) or as a 2D XY model
(for an isotropic bi-axial stress) with an irrotational non-scalar order parameter. For an isotropic bi-axial
stress, we indeed recover the famous coarsening exponent: n = 1/4. This exponent has to be confirmed
experimentally.

PACS. 46.32.+x Static buckling and instability – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems

1 Introduction

In very different fields of physics, problems involving me-
chanics of thin elastic sheet like tethered membranes [1],
biological cell membranes [2], solid langmuir monolay-
ers [3], atomic sheets [4], thin films [5] and thin plates [6]
have attracted a lot of interest in recent years. In this pa-
per, we address the far-from-equilibrium buckling of a thin
elastic sheet. This study is carried on in the framework of
continuum non-linear elasticity theory. We derive a sim-
plified continuum non-linear kinetic equation that gives
stationary solutions reproducing very well the experimen-
tally observed structures of a thin elastic plates [6].

2 The simplified continuum model

We consider a bi-axially compressed thin elastic mem-
brane (or a film) of thickness h parallel to the xOy horizon-
tal plane in its reference state. The film can buckle away
from its horizontal plane along the perpendicular direc-
tion Oz in order to relax the in-plane compressive stress.
We note u(ux, uy, ζ) the displacement field. For large ver-
tical deflection field ζ(x, y), the in-plane components of
the strain tensor is as follows:

uαβ =
1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+

1
2

∂ζ

∂xα

∂ζ

∂xβ
− ε∗αβ , (1)
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where xα and xβ represent x or y. The first term is the
usual linear elastic strain while the second one is the non-
linear contribution of the buckling [7] and the third term
is the pre-strain (ε∗αβ > 0 for compression) in the refer-
ence state (marked by a star). In the following, we use the
general assumption that the modulus of any gradient of
the displacement (a dimensionless quantity) must remain
small. This assumption allows one to use the Hook’s linear
law relating the components of the stress tensor σ to the
above strain tensor components [7]:

σαβ =
E

1 − ν2
[(1 − ν)uαβ + νuγγδαβ ] , (2)

(Einstein’s convention has been used all along this paper).
In the following, the stress σ∗

αβ will refer to the applied
stress in the reference state. The elastic constants, i.e. the
Young’s Modulus E and the Poisson’s ratio ν both de-
pend on temperature. Thus, a free elastic energy F of the
buckled membrane can be written as [7]:

F =
1
2

∫
dx dy [Df(ζ) + hσαβuαβ ] , (3)

with

f(ζ) = (∆ζ)2 + 2(1 − ν)

[(
∂2ζ

∂x∂y

)2

− ∂2ζ

∂x2

∂2ζ

∂y2

]
, (4)

D being the bending coefficient (D = Eh3/[12(1 − ν2)]).
The first term in equation (3) is usually called the linear
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bending term while the second one is known as the non-
linear membrane term. Now, we study the overdamped
dynamics of such a stressed membrane (as if it was im-
mersed in a viscous fluid). We consider a time dependent
Ginsburg-Landau gradient flow kinetics [8]:

{
1
Γ

∂ζ
∂t = − δF

δζ = −D∆2ζ + h ∂
∂xβ

(σαβ
∂ζ

∂xα
)

1
Γ ′

∂uα

∂t = − δF
δuα

= h
∂σαβ

∂xβ
,

(5)

the x, y, z-components of the displacement field u being
the three order parameters, Γ and Γ

′
are kinetic coeffi-

cients. This can also be viewed for a polymer membrane
as an overdamped Rouse dynamics [9] while we neglect
inertia and the long-range effect of hydrodynamic back-
flow on the membrane. At stationarity, equations (5) rep-
resent the famous Föppl von Karmann (FvK) equations
that describe the out-of-plane buckling (Oz-direction) of
an elastic plate of thickness h much smaller than the typ-
ical lengthscale λ along the horizontal directions (xOy).
Despite their complicated form (4th order of derivation
and highly non-linear character) the remarkable property
of FvK equations is that they are variational. Hence, sta-
tionary solutions, even in a strong non-linear regime, are
physically relevant [10].

In order to simplify the problem, we assume that the
in-plane components of the displacement (ux, uy) are in-
deed negligible in comparison to the large out-of-plane
displacement ζ, we set ux = uy = 0. This assumption has
also been considered by Ortiz et al. [11] to describe large
blister stationary shapes in the case of thin film delami-
nation. With this approximation, the equation describing
the buckling dynamics involves only a single order param-
eter: ζ.

Thus, by varying F , we get (without any applied shear
stress, i.e. εxy = 0):

∂ζ

∂t
= −A

(
h2

6
∆2ζ − ∂

∂x

[
φx(ζ)

∂ζ

∂x

]
− ∂

∂y

[
φy(ζ)

∂ζ

∂y

])
,

(6)
with {

φx(ζ) = |∇ζ|2 − 2
(
ε∗xx + νε∗yy

)
φy(ζ) = |∇ζ|2 − 2

(
ε∗yy + νε∗xx

)
,

(7)

and with A = Eh/[2(1 − ν2]. The kinetic coefficient has
been absorbed in time scale. When the applied bi-axial
compression is isotropic (ε∗αβ = ε∗δαβ), equation (6) reads:

∂ζ

∂t
= −A

(
h2

6
∆2ζ −∇

{[
|∇ζ|2 − g2

0

]
∇ζ

})
, (8)

where g2
0 = 2 (1 + ν)ε∗. The stationary solutions of equa-

tion (8) have been studied in several publications [11,12].
When the film thickness is small in comparison with the
typical wave length of the folds λ, the bending term (∆2ζ)
is generally considered as a singular perturbation. Thus,
the minimisation of F is achieved when |∇ζ| = g0 (Eikonal
equation) giving rise to facets. Considering equation (3),
it is easy to show that F contains a double well potential

V (|∇ζ|) =
1
8

Eh

(1 − ν2)
(|∇ζ|2−g2

0)
2 leading to a stable equi-

librium when the slope is such that |∇ζ| = ±g0, while flat
regions (∇ζ = 0) are unstable. The singular perturbation
bending term minimizes the number of folds that have a
cost in energy. Therefore, it appears that equations (6)
and (8) contain the main physical ingredients that lead to
the buckling instability of a compressed elastic membrane.

3 Phase diagram for a static buckling

In order to show that equation (6) captures the main fea-
tures of buckling physics, we consider a single longitudinal
fold parallel to the x-direction (Fig. 1a) of a thin plate sub-
mitted to an external bi-axial compression. Equation (6) is
integrated numerically with periodic boundary conditions
along x- and y-axis. A 2D fast Fourier transform is used to
compute the spatial derivatives while the non-linear terms
are calculated in real space.

Depending on the external applied stress, we calculate
that such a fold evolves to give rise to mainly four non-
trivial remarkable structures: a longitudinal (L) (Fig. 1b),
a bumped (B) (Fig. 1c), a wavy (W ) (Fig. 1d) and a flat
(F ) structure. These results are indeed consistent with
experimental results [6]. The experimental phase diagram
has been reproduced from [6] in Figure 2a.

Note that we do not obtain the so-called oblique shape
(OB) of reference [6] which seems, according to our results,
to depend critically on initial conditions. The theoretical
phase diagram obtained with our model, is presented in
Figure 2b: it reproduces the experimental one (Fig. 2a)
with very good precision.

Consistently with experimental results [6], we find that
the applied stress should be much bigger than the Euler
column stress σ0 = Eh2π/[12b2(1 − ν2)] where b is the
half width of the column. Note that σ0 is calculated for an
assumed cosine transverse shape which is not the case here
since |∇ζ| is a constant except on folds. As a consequence
σ0 is no longer the threshold of the instability (Fig. 2b).

The comparison between our results and experiments
validates equation (6), i.e. the assumption that the in-
plane components of the displacement can be indeed ne-
glected for such an experiment.

4 The dynamics

As equation (6) predicts very well the stationary struc-
tures, we should also check the dynamics for which, ac-
cording to our knowledges, no measure has been done.
In order to address that question, we must make the fol-
lowing remarks. For sake of simplicity, we consider the
isotropic case εαβ = ε∗δαβ . By setting g = ∇ζ and us-
ing equation (8), we get the conservative kinetic equation
for g:

∂g
∂t

= −A∇2

[
h2

6
∇2g − g

(
g2 − g2

0

)]
, (9)
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Fig. 1. Different calculated shapes (obtained after Γt = 8 × 104) adopted by a fold submitted to a bi-axial compression: (a)
initial fold; (b) longitudinal fold (L) (−σ∗

xx/σ0 = 3, −σyy/σ∗
0 = 7); (c) bump (B)(−σ∗

xx/σ0 = 7, −σ∗
yy/σ0 = 3); (d) wavy

(W )(−σ∗
xx/σ0 = 12, −σ∗

yy/σ0 = 10). Parameters (see text): E = 1011 Pa, ν = 0.3, h/b = 1/16.

 

Fig. 2. (a) Experimental phase diagram of a buckled thin plate submitted to a bi-axial compression (Reproduced from Ref. [6]).
(F ) unbuckled, (L) longitudinal, (B) bumped, (OB) oblique and (W ) wavy like configuration; (b) Our theoretical phase diagram.
The initial longitudinal fold is parallel to the x-direction. The parameters are the same as the ones in Figure 1. The thickness
of the gray lines indicates the uncertainty due to the determination of transition lines between the different domains.

where we have used the fact that ∇ × g = 0. Note that
g is a vector and equation (9) is the one that describes
the 2D XY model [13,14] or the coarsening of a crys-
tal surface during molecular beam epitaxy with slope se-
lection [15]. This equation couples the components of g,
this coupling is known to produce a slower growth of do-
main than the usual Lifshitz-Slyozov and Wagner dynam-
ics where λ(t) ∼ tn with n = 1/3 [16]: for equation (9)
Siegert et al. [15] give n = 1/4. It is known [16,14] that
usual theories of phase ordering cannot be applied to the
2D XY model due to the long range correlations between
vortices. But, as mentioned by Siegert et al. [15], there is
an important difference between the slope g and the or-
der parameter of an XY model: the slope must obey the

constraint ∇× g = 0 which is suspected to slow down the
dynamics.

Now, if we only consider a uniaxial compression: for
example ε∗yy = ε∗ and ε∗xx = 0 and a 1D buckling ζ(x),
we get the 1D equivalent of equation (9) which is the 1D
Kahn-Hilliard equation, also well known as model B in the
Hohenberg and Halperin classification [17]. This equation
is currently used to describe the spinodal decomposition
in alloys. Langer [18] has shown that in absence of noise,
the rate at which the structure coarsens is a logarithmic
function of time. The absence of noise in equation (9) in-
dicates that we are working at temperature T = 0. It
has been shown by Bray [19] that when the characteris-
tic scale λ of the domain pattern is large compared with
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Fig. 3. Time evolution of an initially longitudinal fold (parallel to 0x) submitted to a bi-axial compression with −σ∗
xx/σ0 = 12

and −σ∗
yy/σ0 = 10. (a) t = 0; (b) t = 1000; (c) t = 18 000; (d) t = 80 000. The other parameters are the same as the ones in

Figure 1.

the domain wall thickness the system behaves as if it were
at T = 0, the temperature dependence entering through
T -dependent model parameters (which is the case here for
the elastic constants).

For both limits (uniaxial stress and isotropic biax-
ial stress), we can consider the buckled structure as do-
mains of constant slope ±g0 separated by walls (the folds).
Therefore, for these two limits the coarsening dynamics of
equation (8) should be identical to the one of equation (9).

We define α = σ∗
xx/σ∗

yy that measures the anisotropy
of the applied stress on the membrane. We start with the
initial structure represented in Figure 3a, and we calcu-
late the average thickness w(t) = 〈ζ2(r, t)〉1/2 for differ-
ent values of α ranking between 0 (uniaxial transverse
stress σyy) and 1 (isotropic bi-axial stress σ∗

xx = σ∗
yy).

The effective time t varies from 0 to 9 × 104. For both
limit (1D and isotropic), we calculate the first zero of
the correlation functions Cζ(r, t) = 〈ζ(r + s, t)ζ(r, t)〉 and
Cg(r, t) = 〈g(r + s, t)g(r, t)〉.

The inset of Figure 4, shows how the exponent n
varies when the stress σxx varies at fixed σyy = 15 σ0,
(0 ≤ α ≤ 1). Note that for the anisotropic case, the
values of n extracted from Cζ(r) and Cg(r) are not re-
ally exploitable since the coarsening dynamics depends
on at least two length scales with different time depen-
dence [20]. In that case standard scaling assumptions are
invalid. However, w(t) ∼ tn presents a notable difference
depending on which domain (L or W ) of the phase di-
agram is explored. The range 0 ≤ α ≤ 0.65 ± 0.05 cor-
responds to a longitudinal pattern (L) (see Fig. 2) [21].
In that case, the dynamics is extremely slow consistently
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Fig. 4. Isotropic applied stress (ε∗ = 0.01). Variations of
w(t) (diamonds) and λ(t) [obtained with Cζ(r)(crosses) and
with Cg(r) (squares)]. Lines are guides for the eyes. We find
n = 0.26 ± 0.02. Points for which t < 100 are not plotted. In-
set: the coarsening exponent n as a function of the anisotropy
α of the applied stress. Diamonds are obtained from w(t) (see
text). The stress σ∗

yy is maintained at σ∗
yy = 15 σ0 while σ∗

xx

varies from 0 to σ∗
xx = 15 σ0.

with a 1D spinodal decomposition without noise [18]. The
dynamics of coarsening speeds up when we cross the tran-
sition line L/W to fall in the domain of the wavy like
structures where α is increased toward α = 1. For an
isotropic applied bi-axial stress (i.e. α = 1), we found
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n = 0.26 ± 0.02 consistently with [15,22]. Note that due
to the anisotropic pre-strain, equation (6) cannot map the
Siegert’s model [20] exactly.

5 Conclusions

In conclusion, we have shown that in order to describe the
buckling of an elastic membrane or a film, the in-plane dis-
placement field can be neglected in the equation of non-
linear elasticity. The stationary buckled structures of a
plate submitted to a bi-axial compression observed exper-
imentally as well as their phase diagram are indeed very
well reproduced within this approximation. With such an
approximation, we have shown that the corresponding dy-
namical equation maps exactly with the one of the 2D-XY-
model with an irrotational order parameter which fixes
the coarsening exponent to 0.26 ± 0.02 (roughly 1/4). If
such an exponent could be confirmed experimentally, the
dynamics of a buckling elastic membrane would not be a
new class of dynamical systems but could be considered as
a tunable dynamics — by the applied compression- that
interpolates two well known asymptotic limits: a 1D spin-
odal decomposition and a 2D XY model with an irrota-
tional non-scalar order parameter.

Simulations were performed on the parallel cluster Phynum of
Joseph Fourier University. The author gratefully acknowledges
the Centre Jacques Cartier for its financial support.
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